

Abstract

Abstract – In an era of consumerism and instant

gratifications, time is of the essence. Thus, any time waiting

for one task to complete is time that could be spent on a new

task. Our research aims to focus on aggregating wait time

data to provide people with real-time information about

how long a single task will take. In a study by Long Range

Systems, LLC, a supplier of wait time “buzzers”, it is found

that nearly 56% of waiting times at restaurants are 20

minutes or more. [1] This does not even include time to

actually eat the meal, and thus calls for some solution to be

created. There are already existing applications that have

attempted to solve this problem, but have only gotten as far

as relaying only the current wait time to the consumer,

rather than predicting wait times later in the day. [2][3]

There has been some work in wait time estimation, with the

state of the art being LineKing [4], but there are some

drawbacks that we improve and build upon. We have

created a system that collects real-time data, and relays to

the consumer both the current wait time, and projected wait

times throughout the entire day.

WaitLess is able to not only beat this upper limit, but able

to do far better, by being able to provide mean absolute

errors (MAE) of less than 1 minute in a 10-minute

prediction. To reiterate, LineKing is able to provide mean

absolute errors of 2-3 minutes, [4] Waitless beats it out with

mean absolute errors of less than 1 minute.

1. Novelty/Motivation

1.1. Importance of Problem

In an era of consumerism and instant gratification, time is

of the essence. Thus, any time waiting for one task to be

complete is time that could be spent on a new task. Our

research aims to focus on aggregating wait time data to

provide people with real-time information about how long

a single task will take, either currently, or anytime that

particular day. To make things less abstract, we are

focusing taking wait time data for restaurants and other

food service businesses based on user data, and providing

an entire user base with live waiting time data for a given

business based on the collected data.

This research is inspired by the idea that if a person can

make a judgement call on if they have time to wait to eat at

a restaurant or not, they can develop a more efficient daily

routine. In a study by Long Range Systems, LLC, a supplier

of wait time “buzzers”, it is found that nearly 56% of

waiting times at restaurants are 20 minutes or more. [1] This

does not even include time to actually eat the meal, and thus

calls for some solution to be created.

There are already existing applications that attempt to solve

this problem, but have only gotten as far as relaying only

the current wait time to the consumer, rather than predicting

wait times later in the day. For example, “What’s The Wait”

is an application that takes restaurant listings from Yelp and

Google and asks users to submit their current wait time;

similarly, Disneyland has an app that relies on users to

submit their wait times for rides. [2][3] One critical point

that we are looking to improve upon is the idea of the user

submitting data: we want to get passive data from the users

so that the aggregate data is far more saturated (allowing for

better estimation of wait times), instead of relying on a user

always remembering to open our application. In terms of

relating to search engines, a user will be able to query data

from a variety of local restaurants to see what the current

wait times are, as well as what the wait times are historically

at a particular time. This ties into the idea of hyperlocal

search, a next generation search technique.

1.2. Justification via Beating the State of the Art

According to a well cited paper on “How long should a

customer wait for service” [5], “Analysis of the data reveals

that the “ideal” waiting time… is significantly less than the

current corporate waiting time policy.” The paper goes on

to explain that having an ideal waiting time creates more

profit as a function of customer satisfaction.

According to another well cited paper from “Tradeoffs

Between Profit and Customer Satisfaction for Service

Provisioning in the Cloud” [6], There is a tradeoff between

customer satisfaction and profit, and in this paper’s case,

WaitLess

Real-time wait time prediction for customers

David Hirschberg

Computer Science Dept.

UC Irvine

hirschbd@uci.edu

David Hess

Computer Science Dept.

UC Irvine

hessd@uci.edu

Alex Silver

Computer Science Dept.

UC Irvine

silveraa@uci.edu

Nicholas Alba

Computer Science Dept.

UC Irvine

ndalba@uci.edu

customer satisfaction has a direct correlation with amount

of time waiting, even in this high speed environment of high

performance distributed computing. We need to take into

account of different methods of simulations and how to

create a system that can be easily used in different

environments, ranging from human to human wait time

interaction, and computer agent to computer agent

interaction.

In academics there have been some attempts at wait time

estimation, whose abilities far surpass commercial

attempts. LineKing is the state of the art when it comes to

wait time estimation. LineKing boasts being able to provide

a mean absolute error of less than 2-3 minutes when

predicting 10 minutes into the future [4]. WaitLess is able

to not only beat this upper limit, but able to do far better, by

being able to provide mean absolute errors (MAE) of less

than 1 minute in a 10-minute prediction. To reiterate,

LineKing has a MAE of 2-3 minutes, [4] Waitless beats

it out with a MAE of less than 1 minute.

Our system will produce useful data that will inform the

consumer of both current wait times and projected wait

times throughout the day so that the consumer can make

better informed decisions of how to best manage and spend

their time.

2. Technology

2.1. Data Sources

Data has to come from somewhere. We require knowledge

of what time a customer entered or exited a particular

location and how long they spent there on what particular

day. It is important to note that not every customer must be

tracked, but the more data we have, the stronger are results

become. There are several avenues from which this data can

be acquired.

2.1.1 Customer Manual Feedback

We could ask customers to report manually how long then

spent waiting at a location. This will not be pursued as we

wish to be passive.

2.1.2 RF Based

We could install or have access to an RF chip reader in

every single commercial location. Customers could be

tracked throughout the building using RADAR as presented

as “an in-building RF-based user location and tracking

system”, the biggest downside is the cost and

ubiquitousness of such systems. [7]

2.1.3 Video based

We could track customers based on a video feed from every

locations surveillance footage, we could capture what time

they enter and exit a location purely by tracking that person

in real time using a monochromatic video provided from the

aforementioned video cameras. [8] We would then have the

required data to leverage the outcome we desire.

2.1.4 High Precision GPS Tracking

We can track every customer’s GPS location from their

smartphone. We would have access to all of their location

data from which we can gather how much time was spent

at various locations, including commercial locations where

wait times are of interest. We would need access to

everyone’s location data, via some application that the user

would need to install. [9]

2.1.5 Geo Fence

We could have a geo fence as described by a geographical

polygon that encompasses a location of interest, in this case

a store front. When a customer enters a location as defined

by the geo fence, it is taken note of. When a customer than

leaves the geo fence, we know when and how long the

customer spent in that particular location. This would

however still require access to GPS location, but would

instead only fire at threshold crossings, greatly decreasing

battery drain and computational complexity. [10]

2.1.6 Geo Fence via Wi-Fi

We can go further than geo fencing, by accessing network

proximity via Wi-Fi connections. The geo fence is now

when the customer connects and disconnects from a Wi-Fi

router at a particular location. When a particular smart

device connects and then disconnects from a router that acts

as the threshold of the geo fence. [10] A filter would be

needed to account for brief connections and other outliers.

This method does not require access to any permissions on

any smart device, rather the router is all we would need

access to.

We will be using a geo fence approach using Wi-Fi as our

data source. This will allow us to access all the appropriate

data passively without any user interaction. We would also

be able to do this without installing and requiring any

software on customer phones. This will allow for a more

ubiquitous tracking of customers to produce the best results.

2.2. Storage

We use a standard SQL-based data store. Its purpose would

be to hold the data after being processed by our system to

be in the format the prediction algorithm requires.

2.3. Software

2.3.1 Web Server

The current webserver is NGINX. NGINX is known for

being high-performance and very stable. More importantly,

NGINX uses an asynchronous, event-driven architecture,

and as such is far more scalable than the traditional thread-

based Apache server software. This is very important for a

system such as ours that would ideally be handling

thousands of requests per minute as users send time data to

and receive predictions from our server.

NGINX communicates to the backend Python code using

uWSGI. uWSGI runs our Python code and conducts I/O

through a socket that NGINX connects to.

2.3.2 Wait Time Predictor

The wait time projection estimation is created via

MATLAB. A Python MATLAB engine is installed on our

webserver to run the required scripts and functions to

produce the desired results to be passed back to Python

function that called the MATLAB function to produce the

predicted wait times for the day.

2.3.3 Website UI/UX

The home page for the website hosts a Google Map with a

search box, employing the Google Places library and the

Google Maps JavaScript API. Respectively, these APIs are

used for suggesting establishments to users with an

autocomplete feature, and for retrieval and presentation of

geographical data about the establishments of interest.

The webpage that presents the proper data to the user uses

HTML, CSS, and JavaScript to create a dynamically

generated web page that serves the user the correct

information in a useful manner. A graph is presented to the

user using Charts.js open source JavaScript library to

generate the chart in a dynamic modern fashion.

2.4. Algorithms

2.4.1 Wait Time Predictor

There are many ways to evaluate or estimate time series

data, which is the type of data we have. The theory and

many methods are taken from Peter Brockwell’s Time

series: theory and methods. [11] The kNN Estimator is

based on a kNN classification algorithm that returns the k

nearest neighbors in ranked order, but instead of returning

a mode of the top k, we create our estimation based on the

top k nearest neighbors based on our distance metric.

Details will be expanded upon in the implementation and

evaluation section. The state of the art is shown in [4],

which we surpass using the same evaluation metric.

2.5. Evaluation

In order to evaluate the strength and/or accuracy of any

prediction produced by any algorithm, we need a measure.

We adopt the measure as define in [4], where we take the

mean absolute error (MAE) on some given scale, whether

it is the next 10 minutes, the next hour, or till the end of the

day.

𝑀𝐴𝐸 =
1

𝑛
∑|𝑓𝑖 − 𝑦𝑖|

𝑛

𝑖=1

Equation 1 - MAE

3. System Architecture

3.1. Data Source Feed

The data source, no matter which it is, will deliver to the

database timestamped durations of amount of time spent at

a location. It is a one-way communication, since there is no

information needed from any other piece of the system.

3.2. Database

We have stored a large number of simulated data points that

our prediction algorithm uses. In a working version of the

product, we would likely have two databases running

simultaneously.

One of the databases would handle real-time storage of user

data. Ideally, hundreds or thousands of users would be

contacting the service at any point in time, so we would be

using a database suited for high performance, in-memory

data storage, such as Redis. This would allow collection and

handling of large amounts of user data, and would be very

scaleable.

The other database would be a standard SQL-based data

store. Its purpose would be to hold the data after it has been

processed by our system to be in the format the prediction

algorithm requires.

3.3. Webserver

NGINX uses an asynchronous, event-driven architecture,

that would easily handle thousands of requests per minute

as users send time data to and receive predictions from our

server. NGINX communicates to the backend Python code

using uWSGI. uWSGI runs our Python code and conducts

I/O through a socket that NGINX connects to.

We have an API that our data displaying webpage calls on

load, with a business associated with it. Which in turn will

call our Python code to grab the appropriate data to send to

our wait time predictor in our MATLAB engine running in

our python environment.

Once the data is received from the MATLAB wait time

predictor, the projected data is sent to the webpage for

display for the user.

3.4. Wait Time Predictor

When the wait time predictor, which is running within a

MATLAB engine, is called from python on the webserver,

we are given both the current day’s data and the historic

data from that location. We then pass this to our internal

estimator.

3.4.1 kNNE: k Nearest Neighbor Estimation

Given the current day’s data and historic data for a

particular location. Our estimator will produce projected

wait times for the rest of the day. With a granularity for the

time of day of 10 minutes.

Once the kNNE has given us internally our projection for

the day, we pass this back to the python function to do with

it as is required.

3.5. Website and User View

3.5.1 Search

The home page with which WaitLess users interact contains

a Google Map and a search box. Users can query this search

box for establishments of interest via title or category, and

they may append an address to bias the search results in

favor of the address they enter. If no such address is

appended to their query, the results will instead be biased in

favor of the relevant locations that are on display in the

map’s viewport at the time of the query. In addition, the

search box has an autocomplete feature, which also

suggests relevant results inside or near the position of the

Google Map’s current viewport.

Once the user enters a query, and if there are matching

results, photographic markers for the matching

establishments will be placed on their locations on the map.

The user can then click on those markers to retrieve the

WaitLess data associated with them.

Figure 1 - Search Box for Query Input

A demonstration of Google’s autocomplete feature on our

map. The map has been cropped out for the legibility of the

text shown above, but Irvine was in the viewport of the map

at the time of typing into the search box. Here, users are

encouraged to choose among categorical searches like

“coffee shops” and specific establishments in viewport of

the map like Peet’s Coffee and Tea.

3.5.2 Data Retrieval for Presentation

When a query is entered and a map icon is clicked, the

corresponding page for that result is generated through a

GET request; this means that the URL for the page indicates

both the establishment name and the establishment ID so

that the server can retrieve the related data. In order to

generate the right data, placeholders on the HTML page that

display the data are filled as follows:

The title placeholder, which states the name of the

establishment, is pulled from the Google API and is sent to

the GET request via the map interface. It is then placed into

the header as shown in Figure 2. Beneath the title header is

the relevant wait time data for the establishment.

All of the data related to wait times is provided by the server

via the GET request’s establishment ID. The server sends

the page an array list that contains a wait time for every 10-

minute increment of the 24-hour day, all tied to the

establishment ID. The array list also contains the current

wait time and the wait time 10 minutes from the time of the

request. These points are used to fill the placeholders for

“Current Wait Time” and “Wait Time in 10 Minutes”.

3.5.3 Presentation of Retrieved Data

The WaitLess data presented after a user clicks on a

location on the Google Map comprises an estimation of the

current wait time, an estimation of the wait time ten minutes

after the user selects the location, and a chart of predictions

of wait times for the rest of the current day.

Figure 2 - Sample Prediction Chart, for Starbucks in the

UC Irvine Student Center, Queried at 9:00 am

4. Implementation and Evaluation

4.1. Data Source Feed

Ideally the implementation of the data source feed would

have been geo fencing using Wi-Fi connection data,

however in our quest to get this data from OIT at UC Irvine,

we were unable to get the data source in time. As OIT noted

to me, the person who would be able to scrub the data so

that privacy standards were met, was on vacation until the

start of the next quarter.

We needed to still have a data source, so we went with

simulated data, where the simulated historic data was

created where each day would have a random number of

peaks, in the range of 2 and 8 peaks. Where each one would

have a mean time randomly between 11am and 10pm, with

a standard deviation between half an hour and 5 hours, with

a maximum waiting time associated with that peak between

2 minutes and 10 minutes. We then used this data as if it

was gathered live from a proper data source.

Every piece of data attached to it would have a business id

associated with it, 27 alphanumeric characters as a string, a

unique identifier UUID, which is 32 alphanumeric

characters as a string, with a corresponding timestamp, and

duration.

4.2. Database

Since we are currently only using simulated data, the

database implementation is slightly modified for usage of

only simulated data for now. We have a standard SQL-

based data store. Our table has 5 columns, Business ID (32

chars), UUID (27 chars), a timestamp (timestamp), duration

(int).

4.3. Webserver

A major difference between our current version and the

ideal production version of the backend software is our

algorithms running in the MATLAB Engine. Since

MATLAB was more ideal to work in when creating the

algorithms, we left that code alone and instead decided to

communicate with the MATLAB Engine via Python. The

ideal production version would have this MATLAB code

translated to Python (or even C++) to gain higher

performance and remove the need to communicate between

two different runtime engines.

4.4. Wait Time Predictor

The main part of the wait time predictor is the kNNE, which

we will now go into further detail. Work is based upon [11]

[12] [13] [14] [15]

4.4.1 kNNE: k Nearest Neighbor Estimation

The point of this method is to predict the rest of the day,

based upon the entire day up until the current time, and all

previous historic data for this location. To this end we are

going to identify the k nearest neighbors (kNN) for the

current query. [11] [12] Similarity will be defined in a

manner most useful for projection estimation. [13] The

similarity or neighborness function will be defined as

follows,

𝑑𝑖𝑠𝑡(𝑣, 𝑤, 𝑡) = √∑([𝑣(𝑖) − 𝑤(𝑖)] ∗ 𝑔(𝑖))2
𝑡

𝑖=0

Equation 2 – Similarity Distance Function

𝑔(𝑥) = 𝑥3

Equation 3 – Weighting Function for Distance

Equation 3 lets more recent data points of the day have a

greater weight within the distance function. [14] A simple

reasoning would be, the wait times as 3am have little effect

on the wait times at 1pm, rather what occurred at 12:50pm

will have a greater effect on 1pm than 12:30pm would have

on 1pm. The distance function takes the weighted

Euclidean distance from the beginning of the day until the

current time for a particular historic day, where the

weighting is proportional to the cube of the time since the

start of the day. [15]

We take the top k, in our system k=5, to produce our

projection for the rest of the day.

Once we have our top k, in ranked order based upon the

similarity function, the least distance one first followed by

the others in ascending distance order. We produce our

prediction by taking a weighted average of the top k nearest

historic days.

𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛(𝑑1…𝑑𝑘) =
∑ 𝑑𝑖 ∗ 𝑔(𝑖, 𝑘)𝑘
𝑖=1

∑ 𝑔(𝑖, 𝑘)𝑘
𝑖=1

Equation 4 – Projection Based Upon Top K Days

𝑔(𝑖, 𝑘) = [𝑘 − 𝑖 + 1]2

Equation 5 – Weighting Function for Projection

By taking the weighted average, where the weights are

proportional to the square of the ranked order of the k

nearest data vectors, we are able to produce a projection for

the entire day, whose performance will be evaluated in the

coming sections. [14] [15]

Note that the current day’s data is already known up until

the current time. Therefore, the entire day’s projection

before the current time of day is replaced by the actual wait

time for the current day, but the projection of the rest of the

day is produced with satisfying results that we are about to

share.

But before that here is an example day where it is currently

11am and we predict the rest of the day, and we see how

close we are to being on target.

Figure 3 - Full Day Projection From 11am vs Actual Day

Figure 4 - Projection for Test Day from 11am

Figure 5 - Projection for Test Day from 11am Bar

4.4.1.1 Timing

Running 160,000 test runs, we are able to create a

projection for the entire day, within 3 milliseconds. This is

definitely in the realm of real-time and shows the power of

streamlined algorithms and their implementations.

4.4.1.2 Performance

Our performance has several metrics, we will be basing all

of our performance around the mean absolute error (MAE)

of our prediction, where the equation for the is given in

equation 1. Our performance markers are the MAE for the

next 10 minutes, for the next hour, and from the current

time until the end of the day.

A quick note, there is no error for the current wait time,

since the current wait time would simply be the latest piece

of data we would have from our data source.

Our MAE on average for a 10-minute window is under 1

minute, and our maximal average MAE is 45 seconds.

Figure 6 - MAE for a 10-minute projection from

different times of day

Our MAE on average for a one-hour projection does not

exceed 1 minute and 20 seconds.

Figure 7 - MAE for a 1-hour projection from different

times of day

Our MAE on average for a full-day projection does not

exceed 6 minutes, but does improve as the day progresses,

which is at it should, as more data is added to the system.

Figure 8 - MAE for a full-day projection from different

times of day

Figure 9 - Grouped MAE from different times of day

4.5. Website and User View

4.5.1 Webpage Map

Owing to the assistance of the Google Places API, our map

can reliably retrieve images and GPS coordinates for

hundreds of millions of places. [16] But because we do not

have data for every dining location known to that library,

and because we are using simulated data for the project, we

are currently unable to give users wait time information

based on real-world data. Nevertheless, our website can still

be used as a template for querying and presenting the data

we only need to get our hands on it.

4.5.2 Webpage Data Presentation

Figure 2 is a snapshot of the wait times presentation. All of

the data related to wait times is provided by the server via

the GET request’s establishment ID. The server sends the

page an array list that contains a wait time for every 10-

minute increment of the 24-hour day, all tied to the

establishment ID. The array list also contains the current

wait time and the wait time 10 minutes from the time of the

request. These points are used to fill the placeholders for

“Current Wait Time” and “Wait Time in 10 Minutes”.

These color coded time indicators change colors depending

on the wait time; green if the time is less than 10 minutes,

yellow if the time is between 10 and 20 minutes, and red if

the time is greater than 20 minutes. This is done through a

simple inline JavaScript script.

Beneath the wait time numbers is a graph that displays the

wait times as a function of time. The aforementioned array

list of wait times in 10 minute intervals fills a placeholder

on the HTML page. The placeholder uses the Charts.js open

source JavaScript library to generate the graphic

dynamically.

Finally, there is a red indicator of the current time, notated

as “NOW” on the Charts.js graphic, which is pulled from

the server’s time and adjusted if needed to the users’ local

time using the browser time.

5. Summary and Further Work

5.1. Accomplishments

We were able to beat out the state of the art [4] when using

the same 10-minute window MAE metric. We are able to

do it quickly, and without needing access to any person or

their smart device directly. We were able to do this without

any proprietary technology, rather our own research and

bringing together the state of the art and improving upon it.

5.2. Improvements

We were not able to have access to the Wi-Fi data as ideally

as we wished, some things were pushed back a bit by OIT,

such as scrubbing of data for privacy concerns. We could in

the future work of this research, use the Wi-Fi data to

further optimize and enhance our work.

5.3. Future plans

We plan in the future to pursue enhancing this research,

with the possible release as either a paper in a reputable

journal, or perhaps venture into a marketable product. This

will be contingent upon following through with of the

outlined improvements stated in the previous section.

6. References

[1] "Average Restaurant Wait Times." FSR Magazine.

Web. 31 Jan. 2016.

<https://www.fsrmagazine.com/new-restaurant-

concepts/study-released-average-restaurant-wait-

times>.

[2] "What's The Wait?" What's The Wait. Web. 31 Jan.

2016. <http://whatsthewait.mobi/>.

[3] “Disneyland” Disneyland Wait Times. Web. 31 Jan.

2016. <https://disneyland.disney.go.com/guest-

services/download-disneyland-mobile-app/>.

[4] Bulut, Muhammed Fatih, et al. "Lineking:

Crowdsourced line wait-time estimation using

smartphones." Mobile Computing, Applications, and

Services. Springer Berlin Heidelberg, 2012. 205-224.

[5] Davis, Mark M. "How long should a customer wait for

service?." Decision Sciences 22.2 (1991): 421-434.

[6] Chen, Junliang, et al. "Tradeoffs between profit and

customer satisfaction for service provisioning in the

cloud." Proceedings of the 20th international

symposium on High performance distributed

computing. ACM, 2011.

[7] Bahl, Paramvir, and Venkata N. Padmanabhan.

"RADAR: An in-building RF-based user location and

tracking system." INFOCOM 2000. Nineteenth

Annual Joint Conference of the IEEE Computer and

Communications Societies. Proceedings. IEEE. Vol. 2.

Ieee, 2000.

[8] Haritaoglu, Ismail, David Harwood, and Larry S.

Davis. "W4S: A real-time system for detecting and

tracking people in 2 1/2D." Computer Vision—

ECCV'98. Springer Berlin Heidelberg, 1998. 877-892.

[9] Chadil, Noppadol, Apirak Russameesawang, and

Phongsak Keeratiwintakorn. "Real-time tracking

management system using GPS, GPRS and Google

earth." Electrical Engineering/Electronics, Computer,

Telecommunications and Information Technology,

2008. ECTI-CON 2008. 5th International Conference

on. Vol. 1. IEEE, 2008.

[10] Namiot, Dmitry, and Manfred Sneps-Sneppe.

"Geofence and network proximity." Internet of Things,

Smart Spaces, and Next Generation Networking.

Springer Berlin Heidelberg, 2013. 117-127.

[11] Peter J Brockwell and Richard A Davis. Time series:

theory and methods. Springer Verlag New York, Inc.,

New York, NY, USA, 1986.

[12] B. V. Dasarathy. Nearest Neighbor (NN) Norms: NN

Pattern Classification Techniques. IEEE Computer

Society Press, Los Alamitos, CA, 1991.

[13] Christos Faloutsos. Mining time series data. In SBBD,

pages 4–5, 2005

[14] Charles C. Holt. Forecasting seasonals and trends by

exponentially weighted moving averages. International

Journal of Forecasting, 20(1):5–10, 2004.

[15] Konstantinos Kalpakis, Dhiral Gada, and Vasundhara

Puttagunta. Distance measures for effective clustering

of arima time-series. In Proceedings of the 2001 IEEE

International Conference on Data Mining, ICDM ’01,

pages 273–280, Washington, DC, USA, 2001. IEEE

Computer Society

[16] “Google Places API.” Web. 14 Mar. 2016.

<https://developers.google.com/places/>.

